• 此栏目下没有热点文章
    • 此栏目下没有推荐文章
    Jun. 16 2009    Cloudy    登陆 注册
    首页  

    周耀旗:写好英语科技论文的诀窍

       作者:古龙   2009-07-04
    回上一级栏目 打印本文 收藏此文 转发好友 写信给我们

    语际翻译公司 转载请注明https://www.scientrans.com
    ∗本栏目部分文章内容来自互联网,部分已经过本站编辑和整理,如有版权事宜请联系Email/MSN jesczhao@hotmail.com

       Assessing secondary structure assignments of protein structures by using pairwise sequence-alignment benchmarks, the secondary structure of a protein refers to the local conformation of its polypeptide backbone. Knowing secondary structures of proteins iessential for their structure classification, understanding folding dynamics and mechanis(s)ms, and discovering conserved structural/functional motifs. Secondary structure informatiis also useful for sequence and multiple sequence alignment, structure alignment,andsequ(on)ence to structure alignment (or threading). As a result, predicting secondary structures from protein sequences continues to be an active field of research fifty six years after Pauling and Corey first predicted that the most common regular patterns of proteibackbones are the α-helix and the β-sheet. Prediction and application of proteinsecon(n)dary structures rely on prior assignment of the secondary-structure elements from a given protein structure by human or computational methods.

       Many computational methods have been developed to automate the assignment of secondary structures. Examplare DSSP,STRIDE, DEFINE, P-SEA, KAKSI,P-CURVE, XTLSSTR,SECSTR,SEGNO,(es)and VoTAP. These methods are based on either the hydrogen-bond pattern, geometric features, expert knowledge or their combinations. However, they often disagree on their assignments. For example, disagreement among DSSP, P-CURVE, and DEFINE can be as large as 25%. More beta sheet is assigned by XTLSSTR and more pi-helix by SECSTR than by DSSP. The discrepancy among different methods is caused by non-ideal configurations of helices and sheets. As a result, defining the boundaries between helix, sheet, and coil is problematical and a significant source of discrepancies between different methods.

       Inconsistent assignment of secondary structures by different methods highlights the need for a criterion or a benchmark of “standard” assignments that could be used to assess and compare assignment methods. One possibility is to use the secondary structures assigned by the authors who solved the protein structures. STRIDE, in fact, has been optimized to achieve the highest agreement with the authors’ annotations. However, it is not clear what is the criterion used for manual or automatic assignment of secondary structures by different authors. Another possibility is to treat the consensus prediction by several methods as the gold standard. However, there is no obvious reason why each method should weight equally in assigning secondary structures and which method should be used in consensus. Other used criteriinclude helix-capping propensity, the deviation from ideal helical and sheet configurations,and(a)structural accuracy produced by sequence-to-structure alignment guided by secondary structure assignment.

       In this paper, we propose to use sequence-alignment benchmarks for assessing secondary structure assignments. These benchmarks are produced by 3D-structure alignment of structurally homologous proteins. Instead of assessing the accuracy of secondary-structure assignment directly, which is not yet feasible, we compare the two assignments of secondary structures in structurally aligned positions. We assume that the best method should assign the same secondary-structure element to the highest fraction of structurally aligned positions. Certainly, structurally aligned positions do not always have the same secondary structures. Moreover, different structure-alignment methods do not always produce the same lt. Nevertheless, this criterion provides a means to locate a secondary-structure assig(resu)nment method that is most consistent with tertiary structure alignment. We suggest that this approach provides an objective evaluation of secondary structure assignment methods.

    上一页  [1] [2] [3] [4] [5] [6] [7] [8] [9] [10]  ... 下一页  >> 

  • 上一篇文章:
  •    
  • 下一篇文章:
  • 评论
    seme:文章内容文章内容文章内容文章内容文章内容文章内容文章内容文章内容文章内容 章内容文章内容文章内容文章内容文章内容
    seme:文章内容文章内容文章内容文章内容文章内容文章内容文章内容文章内容文章内容 章内容文章内容文章内容文章内容文章内容

    如何向外国人索要文章
    2009-7-8 11:37:24
       向国外学者索取论文的模式   Dear Mr./Mrs.: ________(作者名)   I am a graduate student of Xx Univer...
    Cover letter的写法…
    2009-7-6 18:15:20
       给位在发表SCI的时候不免要写cover letter,好的cover letter能抓住编委眼球,对文章的接受有一定意义。以下是cover letter写作一般方法,希望对您有用   1、&n...
    期刊征稿
    第四届IEEE生物信息与生…
    2009-6-30 19:42:01
    基本信息 主办单位: 四川大学,IEEE生物医学工程协会(EMBS) 承办单位  开始日期 2010/06/18 结束日期  截稿日期 2009/1...
    第九届全国光电技术学术…
    2009-6-30 19:35:58
    基本信息主办单位: 中国宇航学会光电技术专业委员会承办单位 开始日期 2009/11/01结束日期 截稿日期 2009...

    Dr.Rob,资深译审
    翻译问题?英语问题?请  me!

    • 问:文章内容文章内容文章内容文章内容
    • 答:文章内容文章内容文章内容文章内容
    • 问:文章内容文章内容文章内容文章内容
    • 答:文章内容文章内容文章内容文章内容
    • 问:文章内容文章内容文章内容文章内容
    • 答:文章内容文章内容文章内容文章内容
    我的问题